Hole in One!

A house-sized boulder (10 m diameter) rolled down-hill, scoring a hole in one (~60 m diameter crater)! Portion of LROC NAC M122597190L, image width is 500 m across [NASA/GSFC/Arizona State University].

Golf-enthusiasts might look at today's image and say, "Wow, that boulder sure looks like a hole in one!" Boulders like this are incredible because we can determine where the boulder came from by back-tracking along the boulder trail. In fact, Apollo 17 Astronauts Schmitt and Cernan sampled a large boulder at Station 6, and because scientists were able to trace the original position of this boulder using its boulder trail, we can infer what the composition of the rocks up-slope may be.

In this case, the boulder trail curves abruptly as the boulder approached its final resting place. What might have caused this boulder to deviate from its straight, downward course? You can see the boulder trail intersects a crater rim as the local slope was flattening out. As the boulder was slowing, it encountered a new steep slope on its right, thus turning it into the crater.

Boulders fall from high elevations to lower ones because of gravity after being knocked loose by small impacts or moonquakes. Changes in slope can stop boulders; when a steep slope (like that of a crater wall) suddenly shallows, the boulder may not have enough inertia to continue moving. Inertia, or Newton's First Law of Motion, describes an object's resistance to change in velocity. So, a boulder will continue to move until something changes its speed or direction.

LROC WAC monochrome context image of complex crater Henry Frères (~42 km diameter), with a smaller, ~7 km diameter crater superposed (arrow). The floor of this smaller crater is highlighted in today's Featured Image (top). Image M117880746ME, scene is 55 km across [NASA/GSFC/Arizona State University].

Explore the full LROC NAC frame for yourself!

Published by Lillian Ostrach on 19 May 2010